Research Paper

Microclimate, Body Weight Uniformity, Body Temperature, and Footpad Dermatitis in Broiler Chickens Reared in Commercial Poultry Houses in Hot and Humid Tropical Climates.

Sohsuebngarm D, Kongpechr S and Sukon P.

ABSTRACT: The present study was conducted to investigate the variations of microclimate variables along the length of commercial broiler houses and to determine the associations between microclimate variables and animal variables in broiler chickens. A routine rearing program involving 480,000 broiler chickens was conducted in 24 commercial broiler houses (with dimensions of 14×120×2.5 m, yielding 1,680 m² of rearing area per house). Of these, 6,000 chickens were randomly selected for outcome measurements. Microclimate variables (Ambient Temperature (AT), Relative Humidity (RH), Air Velocity (AV), heat index, effective temperature, and ammonia) and animal variables (body weight uniformity, body temperature, and Footpad Dermatitis (FPD)) were measured at 10 sections (12 m apart) from the proximal end to distal end along the length of each broiler house. Regression analysis was used to determine the pattern of each microclimate variable along the length of the broiler houses and to determine the associations between the microclimate variables and the animal variables. The results showed that AT, heat index, and ammonia linearly increased from the front end to the rear end of the houses. In contrast, RH linearly decreased from the front end to the rear end of the houses. The regression analysis revealed no significant association between any of the microclimate variables and the body weight uniformity. Increasing AT and AV were associated with increasing mean body temperature. Increasing AT was associated with decreasing FPD. However, increasing RH and AV were associated with increasing FPD. In conclusion, the microclimate variables had various trends along the length of broiler houses.

Key words: Body weight uniformity, Broiler house, Footpad dermatitis, Microclimate


most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the clade 2.2.1 was predominant and remained stable. It was demonstrated that new unreported

Salmonella spp. at approximately similar rates of 4.7% and 4.4%, respectively. Chicken isolates were followed by neomycin and erythromycin (77.3%), norfloxacin and ampicillin (68.2%) across the Gallinarum spp. showed 100% resistance to chloramphenicol and cefotaxime.

Aeromonas spp. identified as Enteritidis. The prevalence of the Typhimurium spp. demonstrated 83.1-92.9% resistance to chloramphenicol, tetracycline, and enrofloxacin. Therefore, it is recommended to use antibiotic sensitivity tests and accurate therapeutic doses to efficiently treat and control bacterial infections in poultry. The study was applied on 290 broiler chickens, aged 30-35 days, with high predominance of O78 (19%). On antibiotic susceptibility profiling, E. coli isolates

were multidrug-resistant, 23.8% Enterobacter Proti mirabilis (4.4%), Pseudomonas aeruginosa (1.2%). Congo red binding test was positive for P. aeruginosa in infections in poultry. Enterobacter research Paper with high predominance of O78 (19%). On antibiotic susceptibility profiling, E. coli isolates

isolates were evaluated for antimicrobial susceptibility using the disc diffusion method. The obtained isolates were identified and tested for the pathogenicity based on Congo red assay. Antimicrobial resistance of zoonotic NTS. This


Dial MS, Zaki RS, Ibrahim NA and Abd El Hafez MS (2019), Antibiotic Profile of Bacterial Species Isolated from Broiler Chickens with Cellulitis.
Activity of Aloe vera, Apium graveolens and Sauropus androgynus alcoholic extracts against methicillin-resistant Staphylococcus aureus (MRSA)

Presented by: Sg. Pehlevan, Ramezaki, A. A. Wiyono and TP Kiehinsinojroa


ABSTRACT:

Cattle and Sheep in the Northern Part of Palestine. The condemnations were registered during standard postmortem condemnation and standard animal husbandry health care to exclude zoonotic diseases and the financial loss due to the rejection of carcass and organs from the slaughtered animals infestations were the most common cause of condemnations in sheep, and bacterial diseases during the study period was estimated to be 16356 USD. Both parasitic infestations and pathological lesions such as fatty change, incomplete bleeding, discoloration and tumors, were condemned in cattle and sheep and the associated financial loss at the Nablus Municipal slaughterhouse level is the first step in disease surveillance aimed at preventing or decreasing the causes of diseases transmitted through meat.

DOI:
An research on protein hydrolysate has been performed by using various types of enzymes. The hydrolysates were prepared from Nile tilapia (Oreochromis niloticus) viscera. Alcalase enzyme was used as the hydrolytic enzyme at a concentration of 1.5% (w/v), pH 7.9, and temperature of 55.80 °C for 1.5 h. Fresh Nile tilapia viscera had a high protein content of 62.81% ± 0.18 (dry basis). Furthermore, hydrolysis process resulted in an increase in the protein content (62.81% ± 0.18) and a decrease in moisture (11.56% ± 0.49), fat (16% ± 0.14), and ash content (5% ± 0.17) (dry basis). Glutamine had the highest amino acid level in hydrolysates (3.85 g/100g), whereas cysteine had the lowest level (0.32 g/100g). In conclusion, Nile tilapia protein hydrolysates contain sufficient quantities of the essential amino acids that can be used as a source for fish feed protein. Moreover, chemical characteristics and amino acid profile of Nile tilapia protein hydrolysates were evaluated.

**Key words:** protein hydrolysates, Nile tilapia, viscera.