Research Paper

Microclimate, Body Weight Uniformity, Body Temperature, and Footpad Dermatitis in Broiler Chickens Reared in Commercial Poultry Houses in Hot and Humid Tropical Climates.

Sohsuebngarm D, Kongpechr S and Sukon P.

ABSTRACT: The present study was conducted to investigate the variations of microclimate variables along the length of commercial broiler houses and to determine the associations between microclimate variables and animal variables in broiler chickens. A routine rearing program involving 480,000 broiler chickens was conducted in 24 commercial broiler houses (with dimensions of 14×120×2.5 m, yielding 1,680 m² of rearing area per house). Of these, 6,000 chickens were randomly selected for outcome measurements. Microclimate variables (Ambient Temperature (AT), Relative Humidity (RH), Air Velocity (AV), heat index, effective temperature, and ammonia) and animal variables (body weight uniformity, body temperature, and Footpad Dermatitis (FPD)) were measured at 10 sections (12 m apart) from the proximal end to distal end along the length of each broiler house. Regression analysis was used to determine the pattern of each microclimate variable along the length of the broiler houses and to determine the associations between the microclimate variables and the animal variables. The results showed that AT, heat index, and ammonia linearly increased from the front end to the rear end of the houses. In contrast, RH linearly decreased from the front end to the rear end of the houses. The regression analysis revealed no significant association between any of the microclimate variables and the body weight uniformity. Increasing AT and AV were associated with increasing mean body temperature. Increasing AT was associated with decreasing FPD. However, increasing RH and AV were associated with increasing FPD. In conclusion, the microclimate variables had various trends along the length of broiler houses.

Key words: Body weight uniformity, Broiler house, Footpad dermatitis, Microclimate

Most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus and its adaptation to the Egyptian poultry production system. The current study aimed to determine the prevalence and tendency of PR sharply. The stability of PR from 2012 to 2014 could be attributed to the virus circulates and causes infection throughout the year, indicating changes in virus epidemiology and temporal patterns.

ABSTRACT

Delta, Egypt.

Key words: Epidemiological Study on Highly Pathogenic Avian Influenza H5N1 Virus with Modeling.
ABSTRACT: The aim of this study was to evaluate the causes of organ and carcass condemnations and the financial loss due to these condemnations. A slaughterhouse at the West Bank in Palestine. A total of 6344 sheep, and 3042 cattle were slaughtered during the study period. During this period, seven whole carcasses, 77 whole offal, 208 livers, 692 lungs, 46 hearts, 273 kidneys, and 96 spleens were condemned. Parasitic infestations were the most common cause of condemnations in sheep, and bacterial diseases were the most common cause of condemnations in cattle. There was no doubt that effective procedures for identifying and quantifying the causes of condemnation of carcasses and organs associated financial loss. A survey was conducted for six months to determine the major causes of carcass and organ condemnations during the study period was estimated to be 16356 USD. Both parasitic infestations and associated financial loss.
Research on protein hydrolysate has been performed by using various types of enzymes in bovine worldwide. Crossref Metadata

| Abal Alveolitis (15%), proliferative pneumonia (10%), and pleuropneumonia (5%). In addition, cellular changes, reflecting the presence of the pathogen agents and pollution in the environment of this area, have been observed. The study concluded that all lungs collected from stray cats showed pathological changes, including bronchopneumonia (63%), granulomatous pneumonia (15%), verminous pneumonia (15%), and bronchiectasis (26%). The effects of green tea and propolis extracts on pro-inflammatory cytokines TNF-α, IFN-γ, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits was studied. Groups 1, 2, and 3 were inoculated with BHV-1 virus 10^7 TCID50/250 ul in vivo. The fifteen rabbits were divided accidentally into five groups. Non treated infected rabbits group developed respiratory clinical signs, while the other groups were treated with water, green tea, and Ethanol propolis extracts and evaluated antiviral activity of each extract in vitro and in vivo, respectively.

In the present study, water green tea and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and dropped in viral titer more than ACV. The Effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IFN-γ, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits. The cytotoxicity assay was determined the safe dose of water green tea, and ethanol propolis extracts. Non treated infected rabbits group developed respiratory clinical signs, while the other groups were treated with water, green tea, and Ethanol propolis extracts. In conclusion, propolis and green tea extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and dropped in viral titer more than ACV. The present study aimed to determine amino acid profile and composition (water, protein, fat, and ash content) of protein hydrolysates prepared from viscera of Nile tilapia (Oreochromis niloticus) and enzymes, but there is limited research on the nutritive value of visceral waste proteins.