Microclimate, Body Weight Uniformity, Body Temperature, and Footpad Dermatitis in Broiler Chickens Reared in Commercial Poultry Houses in Hot and Humid Tropical Climates.

Sohsuebngarm D, Kongpechr S and Sukon P.

ABSTRACT: The present study was conducted to investigate the variations of microclimate variables along the length of commercial broiler houses and to determine the associations between microclimate variables and animal variables in broiler chickens. A routine rearing program involving 480,000 broiler chickens was conducted in 24 commercial broiler houses (with dimensions of 14×120×2.5 m, yielding 1,680 m² of rearing area per house). Of these, 6,000 chickens were randomly selected for outcome measurements. Microclimate variables (Ambient Temperature (AT), Relative Humidity (RH), Air Velocity (AV), heat index, effective temperature, and ammonia) and animal variables (body weight uniformity, body temperature, and Footpad Dermatitis (FPD)) were measured at 10 sections (12 m apart) from the proximal end to distal end along the length of each broiler house. Regression analysis was used to determine the pattern of each microclimate variable along the length of the broiler houses and to determine the associations between the microclimate variables and the animal variables. The results showed that AT, heat index, and ammonia linearly increased from the front end to the rear end of the houses. In contrast, RH linearly decreased from the front end to the rear end of the houses. The regression analysis revealed no significant association between any of the microclimate variables and the body weight uniformity. Increasing AT and AV were associated with increasing mean body temperature. Increasing AT was associated with decreasing FPD. However, increasing RH and AV were associated with increasing FPD. In conclusion, the microclimate variables had various trends along the length of broiler houses.

Key words: Body weight uniformity, Broiler house, Footpad dermatitis, Microclimate
Coccidiosis is the most common protozoan disease in poultry and is often induced by *E. tenella*. The present study designed an experimental model of coccidiosis in broiler chickens. Forty-two 14-days-old broilers of the cross "ABH 47" were divided into seven groups of six broilers each according to the principle of randomization. Chickens in groups 1, 2, 3, 4, 5 and 6 were orally infected with a total of 1,000; 250; 125; 62 and 15 oocysts/ml, respectively. Broilers of group 7 were uninfected and served as control. To determine the number of oocysts, all feces from the broilers of each group were collected from the days 6 to 12 after infection. Counting was carried out using the McMaster technique. The average number of oocysts per gram of feces in broilers of the groups 1 to 6 was 4,080; 6,880; 1,780; 1,530; 662 and 94, respectively. The average daily weight gain in groups 1 to 4 was significantly lower compared to the non-infected control group. The experimental model of coccidiosis in broiler chickens developed an average of 18 days. The results of the present study are consistent with previous studies. Satiullin RT, Kachanova EO, Chalyshova EI and Andreyanov ON. (2019). Experimental Model of Coccidiosis Caused by *Eimeria Tenella* in Broiler Chickens. World Vet. J. 9(4): 262-267. doi:10.36380/scil.2019.wvj32. 

The present study was carried out to isolate and identify the bacterial agents from five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

Key words: Highly Pathogenic Avian Influenza, Nile Delta governorates.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj36

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj34

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj33

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj32

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj31

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.

DOI: https://dx.doi.org/10.36380/scil.2019.wvj30

ABSTRACT: The current study aimed to determine the prevalence and tendency of multiple-drug resistant (MDR) pathogens in poultry flocks in Egypt. The present study described the spatiotemporal dynamics of HPAI H5N1 virus in five Nile Delta governorates, Egypt (Dakhlia, Qalyobia, Sharkia, Gharbia, and Menofia) where most cases were reported for the years 2006 to 2016. Moreover, this study explored the impact of climate variability in outbreaks occurrence using the statistical generalized estimating equation model. The highest prevalence rate was recorded in Dakhlia and Qalyobia governorates, while Menofia governorate had the lowest one. From 2006 to 2009, the classic clades had been evolved from classic clades after the vaccination pressure until 2010 resulted in raising the PR sharply. The stability of PR from 2012 to 2014 could be attributed to the impact of climate variability on outbreak occurrence in some governorates of Nile Delta, Egypt.
A survey was conducted for six months to determine the major causes of carcass and organ condemnation in cattle. It was found that there was no doubt that effective disease control programs and preventive measures should be immediately implemented in the slaughterhouse at the West Bank in Palestine. A total of 6344 sheep, and 3042 cattle were slaughtered during the study period.

Major Causes and Associated Economic Losses of Carcass and Organ Condemnation in Cattle and Sheep in the Northern Part of Palestine.

Slaughterhouse condemnation during the study period showed that seven whole carcasses, 77 whole offal, 208 carcass condemnations and the financial loss due to these condemnations. A slaughterhouse pathological examination done by the veterinarians at the slaughterhouse. The results of organ condemnations and the financial loss due to these condemnations. The financial loss due to the rejection of carcass and organs from the slaughtered animals at the slaughterhouse level is the first step in disease surveillance aimed at preventing or decreasing losses at the abattoir. The aim of this study was to evaluate the causes of organ and carcass condemnations and the financial loss due to these condemnations. A slaughterhouse with 6344 sheep, and 3042 cattle was conducted during the study period was estimated to be 16356 USD. Both parasitic infestations and bacterial diseases were the most common cause of condemnations in sheep, and bacterial diseases were the most common cause of condemnations in cattle. There was no doubt that effective disease control programs and preventive measures should be immediately implemented in the slaughterhouse at the West Bank in Palestine. A total of 6344 sheep, and 3042 cattle were slaughtered during the study period.

Key words: Palestinian territories to prevent and decrease the causes of diseases transmitted through meat.
Research on protein hydrolysate has been performed by using various types of enzymes worldwide. Alcalase enzyme was used as the hydrolytic enzyme at a concentration of 1.5% (w/v), pH 7.9, and temperature of 55.80 °C for 1.5 h. Fresh Nile tilapia viscera had a high protein content (3.85 g/100g), whereas cysteine the lowest level (0.32 g/100g). In conclusion, Nile tilapia protein hydrolysates contain sufficient quantities of the essential amino acids that can be used as a source for fish feed protein. Moreover, chemical characteristics and amino acid profile of Nile tilapia protein hydrolysates prepared from viscera of Nile tilapia (Oreochromis niloticus) were determined.

Key words: Chemical characteristics, Protein hydrolysates, Tilapia, Viscera.

ABSTRACT:

The present study was aimed to describe the pathological features of lung lesions in stray cats in Mosul city, Iraq. From February to March 2013, 19 ailing cats were caught through animal control campaigns and euthanized. Necropsy and histopathologic findings were recorded for the collected lungs. The results indicated lesions in all the lung samples. Pathomorphological characterization included emphysema (84%), atelectasis (63%), and bronchiectasis (26%). Hemosiderosis and parasitic infestation were also detected. The study concluded that all lungs collected from stray cats showed pathological changes, reflecting the presence of the pathogen agents and pollution in the environment of this city.

Key words: Lesions, Lung, Pneumonia, Stray cats

Stray cats are exposed to deleterious factors in the urban environment. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines (TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits) were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir. The effects of Green Tea and Propolis Extracts on pro-inflammatory cytokines TNF-α, IL2, and Immunoglobulin Production in Experimentally Infected Rabbits were studied. For this purpose, fifteen rabbits were divided accidentally into five groups. Groups 1, 2 and 3 were inoculated with BHV-1 virus 10⁷ TCID50/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV respectively. In conclusion, propolis and green tea extracts were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study showed water green tea, and ethanol propolis extracts were potent inhibitor on BHV-1, which showed 80% protection against this virus and its antiviral activities were similar to Acyclovir.