Microclimate, Body Weight Uniformity, Body Temperature, and Footpad Dermatitis in Broiler Chickens Reared in Commercial Poultry Houses in Hot and Humid Tropical Climates.

Sohsuebngarm D, Kongpechr S and Sukon P.

ABSTRACT: The present study was conducted to investigate the variations of microclimate variables along the length of commercial broiler houses and to determine the associations between microclimate variables and animal variables in broiler chickens. A routine rearing program involving 480,000 broiler chickens was conducted in 24 commercial broiler houses (with dimensions of 14×120×2.5 m, yielding 1,680 m² of rearing area per house). Of these, 6,000 chickens were randomly selected for outcome measurements. Microclimate variables (Ambient Temperature (AT), Relative Humidity (RH), Air Velocity (AV), heat index, effective temperature, and ammonia) and animal variables (body weight uniformity, body temperature, and Footpad Dermatitis (FPD)) were measured at 10 sections (12 m apart) from the proximal end to distal end along the length of each broiler house. Regression analysis was used to determine the pattern of each microclimate variable along the length of the broiler houses and to determine the associations between the microclimate variables and the animal variables. The results showed that AT, heat index, and ammonia linearly increased from the front end to the rear end of the houses. In contrast, RH linearly decreased from the front end to the rear end of the houses. The regression analysis revealed no significant association between any of the microclimate variables and the body weight uniformity. Increasing AT and AV were associated with increasing mean body temperature. Increasing AT was associated with decreasing FPD. However, increasing RH and AV were associated with increasing FPD. In conclusion, the microclimate variables had various trends along the length of broiler houses.

Key words: Body weight uniformity, Broiler house, Footpad dermatitis, Microclimate

Epidemiological Study on Highly Pathogenic Avian Influenza H5N1 Virus with Modeling

ABSTRACT

The present study was carried out to isolate and identify the bacterial agents involved in field cases of avian cellulitis in broiler chickens and also to examine isolated bacteria with high predominance of O78 (19%). On antibiotic susceptibility profiling, E. coli isolates showed 100% resistant to tetracycline, enrofloxacin, and cefotaxime. The study aimed to determine the prevalence and tendency of Salmonella spp. at approximately similar rates of 4.7% and 4.4%, respectively. Chicken isolates were followed by neomycin and erythromycin (77.3%), norfloxacin and ampicillin (68.2%) across the study sites. Kanamycin and gentamicin remained sensitive by 95.5% and 90.9%, respectively. S. Enteritidis. The prevalence of the Salmonella spp. strains.

Prevalence of Multidrug Resistance Non-Typhoidal Salmonella Isolated from Layer Farms and Humans in Egypt.

Key words: Antimicrobial resistance, Zoonotic Salmonella, Poultry production system. The current study aimed to determine the prevalence and tendency of Salmonella NTS strains.

DOI: 10.36380/scil.2019.wvj35

Elsobky Y, Azmy A, El Farawy HS, El Sayyamy KM and Sedek OM. 2019. Antimicrobial Profile of Bacterial Species Isolated from Broiler Chickens with Cellulitis. Antibiotic Profile of Bacterial Species Isolated from Broiler Chickens with Cellulitis.

Key words: Antibiotic profile, Enterobacter, Pseudomonas, Staphylococcus, Streptococcus, Staphylococcus aureus, Enterobacter spp.

Antibiotic Profile of Bacterial Species Isolated from Broiler Chickens with Cellulitis.

Amer MM, Mekky HM, Fedawy HS, Elsayyamy KM and Sedek OM. 2019. Antibiotic Profile of Bacterial Species Isolated from Broiler Chickens with Cellulitis.

Key words: Antibiotic resistance, Enterobacter, Pseudomonas, Staphylococcus, Streptococcus, Staphylococcus aureus, Enterobacter spp.

Prevalence of Multidrug Resistance Non-Typhoidal Salmonella Isolated from Layer Farms and Humans in Egypt.

Activity of Aloe vera, Apium graveolens and Sauropus androgynus alcoholic extracts against methicillin-resistant Staphylococcus aureus (MRSA)

Research on protein hydrolysate has been performed by using various types of enzymes, but there is limited research on the nutritive value of visceral waste proteins. The present study aimed to describe the pathological features of lung lesions in stray cats in Mosul city, Iraq. From February to March 2013, 19 ailing cats were caught through animal control campaigns and euthanized. Necropsy and histopathologic findings were recorded for the collected lungs. The results indicated lesions in all the lung samples. Pathomorphogical characterization included emphysema (84%), atelectasis (63%), and bronchiectasis (26%).

Groups 1, 2 and 3 were inoculated with BHV-1 virus $10^{6.5}$ TCID$_{50}$/250 ul in Madin-Darby Bovine Kidney (MDBK) cell line and the study showed water green tea, and ethanol propolis dropped in viral titer more than ACV. The study of treated infected animals with WGE, EPE and ACV reduced clinical signs, elevated cytokines, and antibody production levels and failed re-isolated or detect DNA in blood or nasal samples swabs from experimentally infected rabbits. In conclusion, propolis and green tea extracts were antiviral for 7 dpi respectively. Group 4 was inoculated with BHV-1 virus 10^{7} TCID$_{50}$/250 ul in nostrils and received propolis ethanol, water green tea extracts and ACV in nostrils without extracts or commercial drug. Group 5 was considered as control negative.

The fifteen rabbits were divided accidentally into five groups. Each group received different treatments, and all groups were able to prevent virus replication and reduced CPE in MDBK cell cultures infected with BHV-1. The present study aimed to study of treated infected animals with WGE, EPE and ACV reduced clinical signs, elevated cytokines, and antibody production levels and failed re-isolated or detect DNA in blood or nasal samples swabs. Non treaded infected rabbits group developed respiratory clinical signs, infectious bovine rhinotracheitis disease and facilitating recovery from latent infection in animals.

Chemical Characteristics and Amino Acids Profile of Protein Hydrolysates of Nile Tilapia (Oreochromis niloticus) Viscera.

Al-Mallah KH and Saeed MGh.

Key words: Chemical characteristics, Protein hydrolysates, Tilapia, Viscera.